
TRIDEnT: Towards a Decentralized Threat Indicator Marketplace
Nikolaos Alexopoulos

alexopoulos@tk.tu-darmstadt.de
Technische Universität Darmstadt

Germany

Emmanouil Vasilomanolakis
emv@cmi.aau.dk
Aalborg University

Denmark

Stephane Le Roux
leroux@lsv.fr

LSV, ENS Paris-Saclay & CNRS,
Université Paris-Saclay

France

Steven Rowe
steven.rowe@web.de

Technische Universität Darmstadt
Germany

Max Mühlhäuser
max@informatik.tu-darmstadt.de
Technische Universität Darmstadt

Germany

ABSTRACT
Sophisticated mass attacks, especially when exploiting zero-day
vulnerabilities, have the potential to cause destructive damage to
organizations and critical infrastructure. To timely detect and con-
tain such attacks, collaboration among the defenders is critical. By
correlating real-time detection information (threat indicators) from
multiple sources, defenders can detect attacks and take the appro-
priate measures in time. However, although the technical tools to
facilitate collaboration exist, real-world adoption of such collabo-
rative security mechanisms is still underwhelming. This is largely
due to a lack of trust and participation incentives for companies and
organizations. This paper proposes TRIDEnT, a novel collaborative
platform that aims to enable parties to exchange network threat
indicators, thus increasing their overall detection capabilities. TRI-
DEnT allows parties that may be in a competitive relationship, to
selectively advertise, sell and acquire threat indicators in the form of
(near) real-time peer-to-peer streams. To demonstrate the feasibility
of our approach, we instantiate our design in a decentralized man-
ner using Ethereum smart contracts and provide a fully functional
prototype.

CCS CONCEPTS
• Applied computing → Electronic data interchange; • Secu-
rity and privacy → Network security;

KEYWORDS
collaborative security; threat indicator sharing; trust; smart con-
tracts; Ethereum

ACM Reference Format:
Nikolaos Alexopoulos, Emmanouil Vasilomanolakis, Stephane Le Roux,
Steven Rowe, and Max Mühlhäuser. 2020. TRIDEnT: Towards a Decen-
tralized Threat Indicator Marketplace. In The 35th ACM/SIGAPP Sympo-
sium on Applied Computing (SAC ’20),March 30-April 3, 2020, Brno, Czech

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/10.1145/3341105.3374020

Republic. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3341105.3374020

1 INTRODUCTION
In recent years, cyber-attacks have grown in impact and have af-
fected millions of people and organizations all over the world. Re-
cent examples, like the infamousWannacry ransomware attack [13]
and the Mirai Internet of Things (IoT) botnet [5], incurred losses cal-
culated to amount to hundreds of millions of US Dollars [7]. Other
attacks were aimed at acquiring restricted data, like the so-called
Red October malware which stole vital information from govern-
ment and research institutions. The latter operated undetected for
five years, according to Kaspersky estimates [22]. Similar attacks
are provisioned to become more common and disruptive, since
attacker incentives grow as more people depend on interconnected
devices (IoT) and critical infrastructure components. Worryingly,
all attacks mentioned above were relatively simple, using known
“old” vulnerabilities (e.g. Wannacry used the infamous NSA-related
EternalBlue exploit), yet caused significant disruption. Mass attacks
exploiting yet-unknown (zero-day) vulnerabilities can have orders
of magnitude larger attack surface and therefore be destructive.

To timely detect signs of attacks and take appropriate action,
firms and organizations use, among other countermeasures, In-
trusion Detection Systems (IDSs). IDSs utilize techniques like sig-
nature matching (e.g. Snort [36] and Bro [30]), or sophisticated
anomaly-based detection algorithms for the detection of unknown
attacks (zero-days) [9]. However, given the advancing complexity
and severity of attacks, isolated IDSs that only monitor one part of
the network are not adequately effective. Attackers may have objec-
tives that require a series of steps, including information gathering
(e.g. mass network scans) and vulnerability assessment that may
not be treated as a threat when viewed in isolation. Consequently,
these complex, multi-step intrusion attempts (e.g. Advanced Per-
sistent Threats) can only be detected by correlating information
from different parts of the network [10]. Transfer of information is
also of notable benefit in scenarios where adversaries mount mass
attacks targeting a large number of defenders by utilizing similar
techniques (e.g. the same zero-day vulnerability). Early warning
signs (e.g. in the form of a network trace, a malicious URL or IP
address) from defenders that were targeted by a given attack can
greatly benefit others against (similar) future attacks against them.
The latter scenario is particularly important, since such mass at-
tacks are widespread in the wild [2], and as already noted, can have

https://doi.org/10.1145/3341105.3374020
https://doi.org/10.1145/3341105.3374020
https://doi.org/10.1145/3341105.3374020

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic N. Alexopoulos et al.

destructive consequences. Threat indicator (TI) sharing is therefore
critical in defending against modern attacks, as it greatly enhances
the defensive capabilities of isolated IDSs.

The topic of collaborative security through TI sharing and cor-
relation has attracted research interest in itself, with a variety of
proposals on exchange mechanisms [25, 26, 41, 47], and standard-
ization efforts [11, 46]. On the one hand, such proposals allow the
exchanged data to retain its utility, and on the other hand protect
the source of the data by filtering out sensitive information (e.g.
IP addresses). However, there is still great reluctance from com-
panies and organizations to share TI data, as financial incentives
for doing so are not clear. This further highlights the central role
of (security) economics [3, 4] in any real-world security problem.
Companies are reluctant to engage in sharing activities, due to the
fact that their competitors can take advantage of their (financial)
investments in the detection effort and the ensuing sharing process,
i.e. competitors may free-ride1. Apart from the basic cost of person-
nel and hardware/software resources dedicated to maintaining the
sharing infrastructure, information leakage when openly publish-
ing (even anonymized) TI may lead to additional risks. These can
come in the form of law-infringement violations [39] or leaking
information to an attacker concerning the defender’s location and
defensive capabilities [38]. Finally, distrust among the participants
further aggravates privacy concerns, while also limiting confidence
in the received information. For these reasons, TI sharing is viewed
cautiously by companies and organizations [32].

Existing TI sharing platforms (e.g. MISP [43], IBM’s “X-Force
Exchange”2, or Facebook’s “ThreatExchange”3) do not consider
incentives and trust, and are intended to be operated by central
trusted third parties. The latter is an important limitation, since
organizations (or even governments) in any kind of a competitive
relationship will be uneasy with providing valuable data to services
fully controlled by their competitors.

Motivated by the aforementioned challenges, we propose a de-
sign towards addressing the issues of incentives and trust via a fully
decentralized TI marketplace that we call TRIDEnT4. TRIDEnT is
an open, carefully designed data stream marketplace that offers the
required functionality for entities to share TI, while providing the
environment and mechanisms for trust relations between them to
develop. Our contributions can be summarized by the following
points:
The TRIDEnT platform design: TRIDEnT is a collaborative plat-
form for TI sharing that facilitates the creation of P2P channels
for collaboration among interested parties. In TRIDEnT, indicator
producers offer their data in the form of live streams5 , selectively
to parties of their choice, thus creating a sharing overlay based
on their trust relations. To attract interested collaborators, they
advertise their streams by including information about the data, in
the form of tags. For example, producers may advertise tags relating
to the type of attacks (e.g. Distributed Denial of Service (DDoS),
malware), the detector (e.g. IDS, honeypot), the type of network

1Actually free-riding is the Nash equilibrium in many security information sharing
models [24]
2https://exchange.xforce.ibmcloud.com/
3https://developers.facebook.com/programs/threatexchange/
4short for Trustworthy collaboRative Intrusion DETection.
5these TI streams are also commonly referred to as Threat Intelligence feeds.

(e.g. backbone, corporate), and so on. Interested parties can buy
streams with some form of currency6 to pay the producers and
start streaming in real time. A rating and trust management system
is included to ensure that participants offer good quality TI data.

Instantiation on Ethereum:We showcase the feasibility of our
system in an open, decentralized setting (anyone can participate),
with an implementation on the Ethereum platform. For readers unfa-
miliar with the basic functionality of Ethereum, a brief overview is
given in Section 2. We describe the design along with the basic com-
ponents of the prototype and show that transaction fees incurred
by the system are projected to remain negligible. Note that the same
design can straightforwardly be adapted to a permissioned setting,
e.g. by implementing it on Hyperledger Fabric [8], in the case of a
closed group of known, yet selfish and competitive organizations.

The remainder of this paper is structured as follows. Section 2 of-
fers some background information, required for the comprehension
of the paper. Section 3 presents the collaborative platform and fo-
cuses on its architecture and operations. Then, Section 4 presents a
prototype implementation of TRIDEnT and its evaluation. Section 5
goes over the related work, while Section 6 discusses limitations of
our work and reports our conclusions.

2 BACKGROUND
In this section we provide some basic background about i) collabo-
rative security and ii) Ethereum and smart contracts.

Collaborative Security andCollaborative IntrusionDetection
Systems (CIDSs) The term collaborative security is an encapsu-
lation of the idea that combining knowledge from different sources
can be of benefit for the detection and mitigation of attacks. The
reasoning behind this argument is well studied [26, 41, 47], and can
be summarized in the following: detectors, e.g. anomaly detection
algorithms, can be improved by enhancing the input data, TI corre-
lation is more effective when the data volume increases, a number
of attacks, e.g. malware spreading, can be contained even before
seen locally when they are anticipated as a result of collaboration.
For instance, Böck et al. [6] recently showed that correlation of
data from different sensors is necessary to enumerate advanced
P2P botnets. Collaborative Intrusion Detection Systems (CIDSs)
further formulate the aforesaid idea by implementing it in the form
of a system [41]. Besides academic work, e.g. [15, 42], there have
been various attempts to realize CIDSs [33, 40]. Nevertheless, the
majority of the proposed systems are either theoretical or assume
that participants are trusted and are willing to collaborate.

Ethereum and smart contracts Ethereum [45] is a decentralized
platform (distributed ledger) for Turing-complete applications, fa-
cilitated by smart contracts, with a native cryptocurrency called
ether. The state of the platform is collectively maintained by its
users via a consensus mechanism, thus guaranteeing its correct
operation under reasonable security assumptions (honest majority
of computing power and relatively good network connectivity).
Thus, the platform is as if it were operated by a trusted party with
a public internal state. Smart contracts can be written in high level

6For the rest of the paper we refer to the exchange medium as the TRIDEnT token,
however any currency can be used, i.e. a dedicated token is not technically necessary.

TRIDEnT: Towards a Decentralized Threat Indicator Marketplace SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

languages (e.g. Solidity), compiled and executed by the Ethereum
Virtual Machine (EVM).

3 THE TRIDENT SHARING PLATFORM
We begin the presentation of our platform by familiarizing the
reader with its basic components and their interaction, along with
a high-level overview of their functionality. We then proceed to
describe inmore detail themore interesting parts and design choices.
An avid reader can infer all details about our platform from the
smart contract pseudocode of our implementation (see Section 4).

3.1 System architecture and overview
TRIDEnT can be conceptually dissected into the following layers:
Distributed Ledger Layer: The system is built on top of a dis-
tributed ledger (DL), e.g. the Ethereum platform [45], which offers
strong consistency and availability guarantees and allows partici-
pants to execute arbitrary (Turing-complete) operations on its state.
This is the base layer of the framework and lays the trust foun-
dations for the following layers, emulating a trusted third party.
The benefits of using a DL as a sharing infrastructure have been
documented recently [1, 44].
Trust Management Layer: As participants can behave mali-
ciously at times and towards certain parties, a trust management
mechanism (i.e. generalized reputation system) is necessary to sup-
port good behavior. Ratings from buyers follow transactions (stream
establishment), and are stored on the DL. At each time, a peer is
able to calculate a local trust score for each other peer, via a trust
calculation algorithm of her choice. In our design (see Section 3.3)
we use an adaptation of the Bayesian mechanism of [34].
Marketplace Layer: The system provides economic incentives
for honest behavior by utilizing an economic mechanism. Tokens
can be thought of as a currency special to the system, used to
buy streams from other participants. In the case where a native
cryptocurrency is offered by an underlying distributed ledger, then
this can be used as a token.
Data Overlay Layer: After establishing a connection, a seller and
a buyer open a channel where TI data and tokens are exchanged.
Multiple such channels create sharing overlays. We employ off-
chain transactions (see the Raiden network7) to enable seamless
and near-instantaneous token transfers.

An intuitive description of the basic functionalities of the platform,
along with the connections among the layers can be seen in Figure 1.
A simplified example operation scenario follows. Organization B,
acting as a TI seller advertises the information they can offer (e.g.
TI from their industrial IDS) on the marketplace. Organization A,
acting as a TI buyer (i.e. party interested in acquiring alert data)
queries the marketplace where advertisements of TI streams are
posted. The buyer also computes trust scores for each seller by
consulting previous ratings, and decides whether she wants to make
a subscription offer matching a stream’s requested price. Assuming
the buyer makes an offer for a stream, and the corresponding seller
decides to accept it (the seller can also consult the buyer’s trust
score as risk in these transactions is bidirectional), a data stream
and a payment channel are established. The buyer may now rate
7https://raiden.network/

the stream (and indirectly the seller) based on its perceived quality
and whether or not it matches the advertisement. The rating is
stored on the ledger. Details about the platform’s operation follow.

Organization A (buyer)

Marketplace

3. Query ratings

Trust Management

2. Query data sources

4. Subscribe

6. Rate alert quality

Distributed Ledger

Data overlay

5. Stream

Organization B (seller)
1. Advertise

Figure 1: TRIDEnT workflow. Arrows show data flow.

3.2 Marketplace functionality
The core functionality of the platform is summarized by the market-
place function definitions of Table 1, which are to be instantiated
by a smart contract. Our actual instantiation of these functions is
reserved for Section 4. Users register on the platform by provid-
ing their public key and “burning” an amount of ether to create an
initial trust value (register). This is a widespread technique to mit-
igate sybil attacks, further discussed in Section 3.3. Then they can
advertise streams (advertise), make offers (mkOffer) for existing
advertisements, or accept offers (accOffer) for their own advertise-
ments. In particular, when making an offer, a security deposit has
to be provided in order to incentivize the act of providing ratings
(see below). The marketplace also offers functionality for deleting
offers (delOffer) and unsubscribing from streams (unsubscribe),
while enforcing the necessary constraints. Finally, ratings can be
provided via calling the rate function. A deposit is used to incen-
tivize buyers to provide ratings for streams. Note that our design
is generic and can in theory provide incentives and trust for any
kind of information sharing platform. However, security informa-
tion sharing is particularly challenging, as it will become obvious
in the following paragraphs, and we therefore focus on it. In the
remainder of this section we present some notable characteristics
of TRIDEnT ’s operation.
TI advertisement format: A TI advertisement includes three im-
portant characteristics of the stream, namely the expected mean
throughput of the stream (e.g. TI per hour), the price of streaming
(e.g. tokens per indicator batch), and a list of strings (tags) offering
information on the type and origins of the TI in the stream. A sim-
ple example is shown in Table 2. Note that the formats presented in
this section serve as simple abstract templates to showcase the func-
tionality of TRIDEnT, meaning that they can be readily enhanced
as required.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic N. Alexopoulos et al.

Function Description Constraints

register used for initial registration
burns ether

advertise create new advert. with
chosen tags

rmAdvert remove given advert.
+ related offers and subscr.

mkOffer create offer for given advert. deposit has to be provided

delOffer delete given offer caller has to be the advert.
publisher or offer creator

accOffer delete offer and create subscr. caller has to be the advert.
publisher

unsubscribe delete subscription caller has to be the advert.
publisher or the subscriber

rate add rating only one rating/subscr.
caller has to be subscriber
timer must not be expired

Table 1: Marketplace function definitions with constraints.

With regard to the tags, we have classified this information
into three categories: (i) type of the detector (e.g. honeypot, IDS,
firewall, etc.), (ii) type of the network (e.g., university network,
home network, backbone), and (iii) type of observed attacks (e.g.,
DDoS attacks, malware, botnet, APTs, port scans, etc.). Here we
note that the third type of information is valid only for streams that
provide historical data (not live data). Whereas in first inspection, it
may seem useless to enable exchange of stale TI in our system, this
is often useful. For example, companies specializing in developing
solutions for detecting and anticipating specific kinds of attacks
would be very interested in TI that have been labeled accordingly.
Advertising and subscribing to streams. Participants of the
platform can subscribe to TI streams of other parties and also ad-
vertise their own streams on the ledger. Participants are typically
IDSs or honeypots but also other CIDSs or humans, e.g., security
experts. For the platform as a whole, it is desirable that parties who
consume TI data from the other parties, also provide their own data.
An advertisement contains the id of the publisher (seller) that can
be used to calculate her trust value, and tags that describe which
kind of TI the subscriber (buyer) can expect, as explained above.
This allows the node to browse all available TI streams.

Publisher: GoodIDS
Expected throughput: 10/hour
Price: 1$/indicator
Detector type: IDS
Type of network: industrial
Type of attacks: DDoS, botnet

Table 2: Example advertisement.

Streamestablishment and operation. Figure 2 presents the stream
establishment protocol of TRIDEnT, involving a Buyer, a Seller and

the system’s smart contract, which facilitates operations. First, in-
volved parties create and register a (public) key to be used for
authentication and encryption. In practice, an implementation of
OpenPGP (e.g. GnuPG) could be used for all cryptographic opera-
tions in this protocol, potentially with different keys for authenti-
cation and encryption, as per standard practice. Upon deciding to
make an offer for a stream corresponding to an advertisement Si ,
the Buyer calls the mkOffer function of the smart contract, thus
transmitting the offer to the DL. Upon deciding to accept the offer,
the seller publishes on the ledger the signed and encrypted address
of the socket (IP address, port) where the buyer can connect to
start streaming. The address is encrypted with the buyer’s public
key (initialized upon registration) and ensuing connections to the
socket (assuming initial authentication is successful) are encrypted
and authenticated. Execution paths concerning decisions not to
accept the offer are pruned from Figure 2 for brevity.

Regarding the TI data format, we propose the state-of-the-art
STIX format [29], although other formats could also be used. For a
comparison of TI exchange formats see [28]. A general template is
given in Table 3. A specific STIX indicator in JSON format signaling
a malicious URL follows in Table 4. We refer the reader to the
documentation of STIX8 for a more detailed description. TRIDEnT
is agnostic to the specific format used.

Time: creation/sending time
Source: origin of attack
Target: target of attack
Classification: name and/or CVE
Assessment: e.g. severity, potential impact, etc.

Table 3: Generic TI format.

{
“type”: “indicator”,
“id”: “indicator–9299f726-ce06-492e-8472-2b52ccb53191”,
“created_by_ref”: “identity–39012926-a052-44c4-ae48-. . . ”,
“created”: “2017-02-27T13:57:10.515Z”,
“modified”: “2017-02-27T13:57:10.515Z”,
“name”: “Malicious URL”,
“description”: “This URL is potentially associated with malicious
activity and is listed on several blacklist sites.”,
“pattern”: “[url:value = ’http://paypa1.banking.com’]”,
“valid_from”: “2015-06-29T09:10:15.915Z”,
“labels”: [“malicious-activity”]
}

Table 4: Example STIX indicator (JSON format). More exam-
ples can be found in the docs9.

8https://stixproject.github.io/about/
9https://oasis-open.github.io/cti-documentation/stix/examples

TRIDEnT: Towards a Decentralized Threat Indicator Marketplace SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Stream establishment protocol (SE)
Buyer Contract Seller

. initialization .

(skS , pkS) ← Gen(1n)
register(pkS)
←−−−−−−−−−−−−−−−−−

(skB , pkB) ← Gen(1n)

register(pkB)

. exchange .

of f = mkOffer(Si)

m ← SigskS (ip:port)
c ← EncpkB (m)

accOffer(of f , c)
←−−−−−−−−−−−−−−−−−

read(c)

ip:port← Dec(c)

connect (ip:port)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

nonce ←$ {0, 1}n

nonce
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ss ← SigskB (nonce)
ss

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. success .

Vf(ss , nonce , pkB)
?
= 1

accept and start streaming
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. failure .

Vf(ss , nonce , pkB)
?
= 0

reject and drop
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 2: Stream channel establishment via a smart con-
tract. Notation follows standard practice, with Gen the key
generation operation (with security parameter 1n), Sig the
digital signature operation, Enc and Dec the operations of
encryption and decryption, and Vf signature verification.
Typewriter font is used for calls to the marketplace func-
tions. Some signature verification operations are omitted for
brevity.

In order to support real-time micro-payments, we employ off-
chain payment channels, as provided by the Raiden Network. Specif-
ically we utilize the µ-Raiden variant, which supports only one
receiver but is simpler and cheaper in terms of transaction costs. A
uni-directional payment channel is created upon successful estab-
lishment of a stream between the buyer and the seller. Subsequent

payments take place via the channel, thus allowing per-indicator
payments with practically zero transaction fees.

3.3 Building trust
As recounted earlier, trust among the participants of collaborative
security mechanisms is of paramount importance. The decentral-
ized smart-contract-based design of TRIDEnT does not require a
trusted party to act as the operator of the sharing service, thus avoid-
ing the need for the participants’ reliance on a common provider.
However, some parties might try to profit from the streams of
the other parties while themselves providing fake or bad quality
data. There is also a risk of malicious participants that may try to
destroy the marketplace, e.g., by providing wrong TI data or by
bad-mouthing honest parties. These violations cannot be controlled
and ruled out by smart contracts. Therefore, some form of trust
management, such as a reputation system, is required in order to
protect participants from malicious insiders that disseminate low
quality, malformed, or misleading data. TRIDEnT comes with a
built-in trust bootstrapping and rating system, thus providing the
foundations for trust assessment.

Trust bootstrapping: Since new parties may enter the system at
any time (TRIDEnT is meant to be an open system), a way to boot-
strap their standing in the community is needed, even if they do
not have real-world social ties to other participants. At the same
time, this bootstrapping mechanism should mitigate sybil attacks.
In TRIDEnT, trust bootstrapping is achieved via proof-of-burn. To
register in the system, a participant “burns” an amount of cryp-
tocurrency in order to prove her commitment to the community.
Cryptocurrency “burning” refers to the act of rendering an amount
of currency provably un-spendable, equivalent to actual burning
of currency notes. The amount required to achieve a baseline trust
value and start interacting in the TRIDEnT community should re-
main low in order not to be considered an entry barrier for new
participants. On the other hand, the amount required to achieve
considerably higher initial trust should increase quickly, as to make
it difficult for malicious participants to acquire high initial trust
and harm the system. The exact baseline amount is a deployment
decision, not addressed in this paper.

Rating: Transaction ratings are a widely used and empirically
effective tool for building trust inmarketplace environments. Rating
in TRIDEnT is intertwined with the other marketplace operations.
After a stream is established, the buyer can rate the seller by calling
the rate function of the smart contract. This rating is thus part
of the global state of the underlying Distributed Ledger (DL) and
therefore visible to all participants. After the stream is closed, the
buyer can finalize her rating by calling the rate function once again.
This is intended on the one hand to allow early rating (since streams
may be very long-lived), and on the other hand to discourage sellers
from providing good quality data up until they are rated positively,
and then decreasing quality. The perceived quality of a stream
depends on whether data provided are judged to be real, useful, and
corresponding to its advertisement.

A major problem faced by rating systems is user unwilling-
ness/laziness to provide ratings, especially in the case where it

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic N. Alexopoulos et al.

involves extra effort or possible additional transaction fees. In TRI-
DEnT, users are monetarily incentivized to provide ratings by mech-
anisms built in the system. Specifically, upon making an offer, the
buyer deposits a small but not negligible fixed fee to the market-
place smart contract. This fee is returned to the buyer if the offer is
rejected or, in two rounds, upon submitting a rating10. It is easy to
see that if the fixed fee is considerably larger than the transaction
fee required to call the rate function, buyers are incentivized to
follow up any purchase with a rating.

The mechanism described above and implemented in our system,
offers clear incentives for buyers to submit ratings. However, incen-
tives for providing correct ratings may also be needed. Although
these fall outside of the scope of this paper, TRIDEnT can straightfor-
wardly support algorithms proposed in literature to overcome this
problem, e.g. the elegant idea proposed by Jurca and Faltings [21].
The idea is to establish a side-payment channel organized by a set
of broker agents that buy and sell ratings. They reward (pay) an
agent who submitted a rating if the following rating (coming from
another agent) agrees with hers. Under well-defined assumptions
(the next experience is more likely to be the same as the previous:
Pr [Cit+1 |C

j
t] > 0.5 for i = j), truthful reporting is a Nash equilib-

rium. In TRIDEnT, no broker agents are required; the mechanism
can be added to the existing protocol and executed by smart con-
tracts. In this sense, TRIDEnT is an extensible platform.
Local trust computation: The local trust computation algorithm
employed by each party to decide whether or not to engage in
exchange activities with another party is subject to choice, and
technically not part of the core TRIDEnT infrastructure. Generally,
trust decisions in this setting are more complex than just computing
a reputation score and require human engagement. However, we
still consider trust scores as valuable decision-supporting tools,
and in our instantiation we use an adapted version of CertainTrust
(CT) [34] to calculate a trust score for each participant. In contrast
to simplistic “average rating” trust representations, CT, since it is
based on Bayesian statistics principles, can model the perceived
accuracy of the derived trust value, as well as incorporate prior
information (corresponding to Bayesian priors). More details about
our construction follow.

In the Bayesian representation of CertainTrust / CertainLogic [18,
34, 35], trust is calculated as the expectation/probability:

E = ce · t + (1 − ce) · f (1)

where t is the point estimate of the (probability of success) parame-
ter of a binomial distribution, f is the a priori expectation of the
same parameter, and ce is a factor that “fades” the effect of the prior
value, as more pieces of evidence are taken into account, in accor-
dance with Bayesian statistical inference. Evidence in this model
are either positive or negative experiences (binary ratings). The
number of positive and negative experiences is denoted by r and
s respectively, and n = r + s . The mapping between the evidence
space (r , s) and the Bayesian probability space is given by:

t =

{ r
r+s if r + s > 0
0 else (2)

10According to our current implementation, the fee is returned after the first rating a
buyer submits (see lines 44-48 of Smart Contract 1).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.5

1.0

f1(y) = 1− 1
1+log2(y+1)

f2(y) = 1− (1
2
)y

Figure 3: Comparison of proof-of-burn candidate functions.

ce =

0 if n = 0

N ·n
2·w ·(N−n)+N ·n if 0 < n < N

1 if n ≥ N

(3)

where w is a normalizing value we set to 1, and N is a user-set
threshold number of evidence needed to achieve a desired level of
significance of the estimate (in the sense of a confidence interval).
It is easy to see from Eq. (3) that the value of ce increases with
increasing number of evidence n, as intended.

We set the Bayesian a priori expectation f regarding the initial
trustworthiness of an entity, by utilizing a proof-of-burn (PoB)
bootstrapping mechanism11. The function f ∗ : y ∈ R+ → f ∈
[0, 1], relating the amount of cryptocurrency units burned, and the
resulting baseline trust, where y = x

c the fraction of the amount
of cryptocurrency burned and c the baseline value for achieving
initial trust of 0.5, should satisfy the following properties:

f ∗(0) = 0, f ∗(1) =
1
2
, lim
r→∞

f ∗(y) = 1, f ∗
′

(y) > 0, f ∗
′′

(y) < 0 (4)

After considering different functions, we arrive at the definition of
f ∗ ≡ f1, with:

f1(y) = 1 −
1

1 + loд2(y + 1)
(5)

The definition of f1 satisfies the properties of Eq. (4), and addition-
ally, its growth rate is suitable to our needs. In Figure 3, both f1
and f2 = 1 − (12)

y (proposed in [49]), are depicted. We see that f1
rises faster up to the value of 0.5, and then its growth rate drops
significantly, especially with respect to f2. By adopting f1, users
will be able to acquire a baseline trust value of 0.5 by spending a
reasonable fee, but to acquire significantly larger initial trust, they
will have to pay exponentially more. Even by paying 20 times the
default fee, their initial trust would not be much higher than 0.8.

3.4 Privacy discussion
TRIDEnT, by design, offers increased privacy assurances for partic-
ipants by allowing the formation of P2P overlays based on trust,
rather than indiscreetly publishing TI data. Indicators are assumed
to be sanitized according to best practices (e.g.,[25]), limiting the
exposure of private information to collaborators. Furthermore, data
sanitization could be executed depending on the trust relation be-
tween the collaborators, allowing for less sanitized – more valuable
TI to flow, as trust between collaborators grows. Overall, our de-
sign offers a solid foundation for data exchange, able to support
existing and upcoming privacy-enhancing techniques based on TI
sanitization, bloom filters etc., which are not the focus of this paper.
11According to our current implementation, the PoB operation is performed at regis-
tration (see line 3 of Smart Contract 1).

TRIDEnT: Towards a Decentralized Threat Indicator Marketplace SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Apart from the TI data themselves, another important source of
privacy leakage is the marketplace metadata (e.g. who is buying
from whom). Although participants may use pseudonyms in the
marketplace, the metadata may need to be protected with tech-
niques similar to [37]. This is left for future work.

3.5 Attacks and defenses
Apart from the usual attacks and corresponding defenses against
trust / reputation systems in the marketplace context (see e.g. [19]),
there are some specific notable issues that TRIDEnT is faced with,
that may not be obvious on first sight.

Target bad-mouthing attack: In this scenario, the adversary at-
tempts to artificially lower the reputation of the target party, so that
he can discredit her reporting competence before attacking her. This
way, the adversary would be able to lower the chance of the attack
evidence being spread among the defenders. The most common
way of performing such an attack is creating multiple identities
and giving a lot of negative ratings. Since joining the system comes
at a non-negligible cost and submitting a rating requires starting
a stream, which incurs respectable costs, the attack is expensive
for an adversary to perform, and not scalable. Remember, that the
principal aim of TRIDEnT is to mitigate mass attacks, not targeted
ones.

Stream reselling: In this attack, an adversary resells TI he has
bought from sellers, to other parties. Apart from this being a prob-
lem for the incentives mechanism (the reseller can practically free-
ride), this attack can also compromise the security of the system,
as TI may contain sensitive information and are intended for use
by the designated recipient. Enforcing watermarking on security
TI seems almost impossible, as the distinctive information would
be easy to locate and remove. A solution with the use of fake TI
as watermarking would also reduce the value of the TI as a whole,
which goes against the goals of the system. Therefore, defense
against reselling attacks relies on the same mechanism as defense
against low-quality data, i.e. the trust management system already
described in the previous sections. Hence, sellers also face risk and
should assess their trust in their buyers. That being said, studying
the reselling attack in isolation is a challenging open problem for
the community. For example, mechanisms that would allow hon-
est buyers to discern resellers could be valuable for the system.
One could envision a solution where honest participants contin-
uously and randomly check a subset of a node’s incoming and
outgoing streams to detect resells. This check could be performed
in a privacy-preserving manner via secure multiparty computa-
tion. These solutions could of course find applications in other data
sharing applications.

After presenting the basic functionality of TRIDEnT, we proceed to
validate the basic principles behind it with a formal probabilistic
model.

4 PROTOTYPE AND EVALUATION
In this section, we present our prototype implementation of TRI-
DEnT. Specifically, we present eth-TRIDEnT, running on Ethereum.
The code can straightforwardly be modified to run on permissioned
platforms, e.g., Hyperledger Fabric.

Smart contract pseudocode: In Smart Contract 1 we provide a
pseudocode description of the most notable parts of the backbone
smart contract Bmarket, which provides the basic functionality of
TRIDEnT. We loosely follow the notation of [23], with $ prepended
to variables associated to some form of currency (tokens), and CLT
standing for the client (e.g. Ethereum wallet address) who calls
the function. The initialization of the data structures is omitted for
space reasons. The logic of the contract is not trivial, and therefore
we proceed to provide a brief overview.

The register function allows clients to register in the system with
a public key pk and initializes their balance (ledger) and ratings
set. This initial balance provided in Ether cannot be retrieved from
the contract and is therefore considered a form of coin burning
even though the value invested is useful inside the system12 . Only
registered clients can call any of the following functions. The adver-
tise function allows clients to post advertisements accompanied by
tags (see line 10) in the marketplace. The function rmAdvert allows
clients that have posted an advertisement to remove it from the
marketplace, while returning fees and deposits held by the contract
to their rightful recipients. The mkOffer function adds an offer to a
specific advertisement already existing in the marketplace. A fee
(initial payment to the seller if the offer is accepted) and a deposit
(incentive to provide rating) are withheld by the contract. The de-
lOffer function allows the offer maker or the advertiser to delete
(take back or turn down respectively) an offer and send the tokens
withheld by the contract to the offer maker. Moving on, the accOffer
function allows clients that have made advertisements to accept
offers for them, claiming the initial fee and providing the encrypted
(ip:port) information needed to establish the stream (see SE proto-
col of Figure 2). The unsubscribe function allows clients that have
either posted an advertisement or are subscribed to one, to remove
their subscription. Finally, rate allows clients to provide a rating
about a client that made an advertisement about a stream they are
subscribed to. Upon their first rating for a given subscription, they
receive their deposit back.
eth-TRIDEnT: We implemented our smart contracts in Solidity
v0.4.25.We created two contracts, namely AlertExchange.sol and
Token.sol. The former is the heart of the prototype, implementing
the functions described in pseudocode above; the latter implements
a simple ERC-20 token used as the system’s currency. In order to
mint the token, a node has to burn ETH. Micro-transaction chan-
nels were implemented by calls to the already deployed µ-Raiden
contract. When it comes to evaluating smart contracts, transaction
costs (in Ethereum: Gas fees), i.e. fees paid by users to miners, are an
important metric and the usual way of arguing about the feasibility
of an approach.

In Table 5, we show the transaction costs of the functions of
the Alert Exchange contract, as calculated after deployment to the
Rinkeby test network. The smart contracts can be found at the
following addresses on Rinkeby:
–Alert Exchange: 0x682528b9cc9b74ca00efb004a4619fabd6f5cd69
–Token: 0x380ab69f3230c1990c9bbf4ecdcfefc6bd26501c
–Raiden Channels: 0x83aeb45854e1ac54f5d9fa42fd7a79b398aa50cf

The code of the main contract (AlertExchange) was verified and

12Traditional “wasteful” burning can naturally also be employed.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic N. Alexopoulos et al.

Smart Contract 1: The Backbone contract Bmarket
1 Function register:
2 Upon receiving (register, $payment, pk) from CLT :
3 ledger[CLT] := $payment

4 ratings[CLT] := ∅
5 key[CLT] := pk

6 parties := parties ∪ (CLT)

7 Function advertise:
8 Upon receiving (advertise, tags) from CLT :
9 ASSERT CLT ∈ parties

/* This assertion is repeated in all subsequent funtions,

but omitted for clarity */

10 adv = (tags, CLT, {∅}, {∅})
11 adverts := adverts ∪ adv

12 Function rmAdvert:
13 Upon receiving (rmAdv, adv) from CLT :
14 ASSERT adv ∈ adverts, CLT = adv[1] // see line 10

15 adverts := adverts \ adv
16 Return pending offer fees and deposits to offer makers

17 Function mkOffer:
18 Upon receiving (makeOffer, adv, $fee, $deposit) from CLT :
19 ASSERT adv ∈ adverts
20 ledger[CLT] := ledger[CLT] - $fee - $deposit
21 ledger[this] := ledger[this] + $fee + $deposit

/* tokens transferred to the contract itself (this) */

22 offer = (CLT, fee) // offer[0] = CLT, offer[1] = fee

23 adv[2] := adv[2] ∪ offer

24 Function delOffer:
25 Upon receiving (dlOffer, offer) from CLT :
26 ASSERT ∃ adv ∈ adverts: offer ∈ adv[2], (CLT = offer[0] OR CLT =

adv[1]) // CLT is advert owner or has made the offer

27 adv[2] = adv[2] \ offer
28 Return $fee and $deposit to offer maker

29 Function accOffer:
30 Upon receiving (acceptOffer, offer, c) from CLT :
31 ASSSERT ∃ adv ∈ adverts: offer ∈ adv[2], CLT = adv[1]
32 sub = (offer[0], false, offer[1], c) // c = Enc(ip:port)

33 adv[3] = adv[3] ∪ sub
34 ledger[CLT] := ledger[CLT] + offer[1] // claim initial $fee

35 ledger[this] := ledger[this] - offer[1]
36 delOffer(offer)

37 Function unsubscribe:
38 Upon receiving (unsubscribe, sub) from CLT :
39 ASSERT ∃ adv ∈ adverts: sub ∈ adv[3], (CLT = adv[1] OR CLT =

sub[0]) // CLT is advert owner or subscriber

40 adv[3] = adv[3] \ sub

41 Function rate:
42 Upon receiving (rate, sub, rating) from CLT :
43 ASSERT ∃ adv ∈ adverts: sub ∈ adv[3] CLT = sub[0], // CLT is a

subscriber

44 ratings[adv[1]] := ratings[adv[1]] ∪ rating
/* if rating for the first time */

45 if sub[1] = false then
46 ledger[CLT] := ledger[CLT] + deposit
47 ledger[this] := ledger[this] - deposit
48 sub[1] := true

can be easily inspected at Etherscan13. For the calculation of the
transaction costs, the gas price was set to 4 Gwei (4 · 10−9 ETH) and
the ETH/EUR exchange rate to 180.00, according to observations at
the time of writing14. Among the transaction costs of the methods,
the cost for accepting an offer stands out. This is because themethod

13https://rinkeby.etherscan.io/address/0x682528b9cc9b74ca00efb004a4619fabd6f5cd69
14According to https://ethgasstation.info/. September 2018.

Cost
Function Gas Gwei EUR

current current peak
deploy 3 994 723 15 978 892 2.88 99.68
register 54 672 218 688 0.04 1.36
advertise 173 279 693 116 0.12 4.32
rmAdvert 41 257 165 028 0.03 1.03
mkOffer 194 381 777 524 0.14 4.85
delOffer 25 820 103 280 0.02 0.64
accOffer 756 014 3 024 056 0.54 18.86

unsubscribe 34 139 136 556 0.02 0.85
rate 46 663 186 652 0.03 1.16

Table 5: Trans. costs at the time of testing (Sep’18) and the
peak of Ethereum price and network load (Jan’18) (last col.).

contains the deletion of an offer, as well as the creation of a sub-
scription. Subscriptions are the contracts’ biggest data structures,
which makes them relatively expensive to save. As an example,
the establishment of a stream would cost a total of under 1 EUR at
the time of writing and under 30 EUR considering the worst-ever
price and network traffic15. As these streams are projected to be
relatively long-lived, these costs are expected to be negligible for
firms. Note that the contract deployment cost is a one-time cost
for the whole lifetime of the system. The implementation of the
AlertExchange contract consists of 423 lines of Solidity code and
a detailed report on the engineering obstacles we encountered will
follow in an extended version of the paper.
Client-side application: In order to make interaction with the
deployed smart contracts user-friendly, we also developed a client-
side command-line application consisting of around 2 000 lines of
JavaScript code. The application calls the smart contract methods
using the web3 JavaScript API16. It enables all necessary function-
alities for viewing, advertising, subscribing, and rating TI streams,
as well as calculating trust values for participants. Furthermore,
the client-application allows parties to provide an endpoint from
which subscribers can download TI, authenticates the subscribers
and validates that the TI batches are paid for.

5 RELATEDWORK
In this section we focus on the related work with regard to incen-
tives and trust for CIDSs, as well as on collaborative platforms that
exist nowadays. For a summary of CIDSs the reader can refer to
Section 2.

Gal-Or and Ghose [16] propose a game-theoretic model for
information-sharing in cyber-security. They conclude that although
information sharing is beneficial to firms, with no additional incen-
tives and anti-free-riding mechanisms, they may not be encouraged
to participate truthfully. This work acted as a motivation for TRI-
DEnT. Despite the significant work that has been done in the areas
of collaborative security [26] and CIDSs [41, 47], only a very small
portion of it deals with incentives and trust among the participants.
That is, the majority of the related work assumes that all the par-
ticipants are honest, trustworthy and willing to collaborate. Duma
et al. [12], were one of the first to propose a simple trust model
1515th January 2018. ETH/EUR: 1134.20, Average gas price: 22Gwei.
16https://github.com/ethereum/wiki/wiki/JavaScript-API

https://rinkeby.etherscan.io/address/0x682528b9cc9b74ca00efb004a4619fabd6f5cd69
https://ethgasstation.info/

TRIDEnT: Towards a Decentralized Threat Indicator Marketplace SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

for CIDSs. However, their model is prone to insider attacks (e.g.,
betrayal attacks). Fung et al. also examined this field, proposing
more advancedmechanisms in their incremental works [14, 15], and
attempted to deal with the aforementioned insider attack challenge.

Zhu et al. [48], touch the topic of incentives in CIDSs and pro-
pose a game-theoretic model that ensures that peers of the system
contribute equally (in terms of computational power). This work is
very relevant for us, however it is limited only to incentives that
are connected to the computational power of the overall system
as well as to the resource allocation problem. Hence, this work
does not take into account the bigger picture of collaborative secu-
rity; e.g., the incentives for an organization to join a collaborative
ecosystem, the economics of such a system, etc. Similarly, Guo et
al. investigate incentives for CIDSs in mobile ad-hoc networks [17].
They propose an auction process using virtual credits and model
cooperative detection as an evolutionary game. Although they also
use a form of virtual currency, their setting is substantially differ-
ent than ours (completely different assumptions) and they do not
consider trust relations among collaborators. Jin et al. [20] propose
a privacy-protection mechanism for CIDS where participants are
trustworthy and misreport (share false information) with a known
probability to protect their privacy. In our view, misreporting is not
an option for real-world systems, and privacy must be preserved by
proper data sanitization and forming collaboration overlays with
trustworthy partners, as enabled by TRIDEnT. Finally, the idea of
using blockchain technology and smart contracts to enable collabo-
ration in the security domain has been pitched in several interesting
recent works [1, 27, 44]. However, to the best of our knowledge, no
concrete design and instantiation for network TI sharing has been
proposed before. In the start-up world, PolySwarm [31] is creating a
prediction marketplace for the classification of malware. This is an
interesting idea and could be integrated with TRIDEnT on a single
platform.

Finally, besides the aforesaid (mostly academic) work, a number
of practical real-world TI sharing platforms exist. The Malware
Information Sharing Platform (MISP) is one such example of a col-
laborative platform that has been used by several organizations
[43]. Initially MISP, as its original name implies, mainly focused on
malware exchange; over the years though, it has been practically
extended to more indicator types. However, MISP does not tackle
the incentives topic, nor the trust and TI quality aspect. In addition,
due to its structure (closed system that requires a formal process
to enroll) attacks on it (internal or external) have not been exten-
sively investigated. Other similar systems that have been proposed
include IBM’s X-Force Exchange17, Facebook’s ThreatExchange18
and DShield19. These platforms are in principle closed systems that
focus on a one-to-many or many-to-many exchange of low level
(e.g., raw) data between entities [24]. In many cases, the diversity
of shared data is very limited; for instance, the Facebook ThreatEx-
change is only dealing with Facebook indicators to assist Facebook
API developers. Note that we do not view TRIDEnT as a competitor
to existing sharing platforms, which have solved a lot of practical
problems concerning the structure and mechanics of the actual data

17https://exchange.xforce.ibmcloud.com
18https://developers.facebook.com/programs/threatexchange
19https://www.dshield.org

transmission and correlation, but rather as an underlying important
incentives layer.

6 DISCUSSION AND CONCLUSIONS
In this section, we discuss how our system can generalize to other
types of shared data, as well as what limitations exist.
Generalization In essence, TRIDEnT is a generic streaming mar-
ketplace, and thus could be used for sharing any kind of information,
and not just security TI. However, the importance, numerous chal-
lenges, as well as the unique risk incurred by both buying and
selling TI, make the functionalities offered by TRIDEnT necessary.
Despite its limitations (see below), we consider TRIDEnT to be a
considerable step towards increased security collaboration in prac-
tice; not only among big companies and organizations, but open
to anyone. Also, the format of TRIDEnT ’s advertisement and TI
is naturally not limited to Snort-style alerts. The system can be
used to establish streams where e.g. bloom filters or pre-trained
machine learning models are exchanged, allowing greater real-time
detection capabilities. The stream establishment functionality could
even be employed in order to run privacy-preserving CIDS on raw
data using secure multiparty computation (SMC) in the future. The
main challenges of incentives, TI quality and trust would still be
present to some extent in any case. We consider the field to be
important and ripe for research progress after a stagnant period.
Why a decentralized TI marketplace Although financial incen-
tives and reputation systems can be implemented in centralized
sharing architectures, there are reasons to pursue a decentralized so-
lution. It may be impossible for all parties interesting in exchanging
data to agree on a single trusted arbitrator and platform operator
(for example when belonging to different jurisdictions). With a
decentralized implementation with smart contracts, no platform
operator is needed.
Limitations Considering our system’s limitations, an important
one is that it has not been tested in the wild, since the financial
cost of developing and supporting production-ready software (and
more so security-critical software) greatly exceeds our research
budget. Additionally, the stream reselling attack (see Section 3.5)
may require new mitigation mechanisms.
Conclusions and future workWith the design and prototype im-
plementation of TRIDEnT we show that fully decentralized threat
indicator exchanges built with smart contracts are feasible. Fur-
ther investigation into the trust establishment mechanisms (e.g.
investigating the entry cost vs. security trade-off of different proof-
of-burn parameters, or incorporating forms of financial insurance
in the trust calculation), as well as empirical validation of the design
principles are areas of future research.

REFERENCES
[1] Nikolaos Alexopoulos, Emmanouil Vasilomanolakis, Natália Réka Ivánkó, and

MaxMühlhäuser. 2017. Towards Blockchain-Based Collaborative Intrusion Detec-
tion Systems. In Critical Information Infrastructures Security - 12th International
Conference, CRITIS 2017, Lucca, Italy, October 8-13, 2017, Revised Selected Papers.
107–118. https://doi.org/10.1007/978-3-319-99843-510

[2] Luca Allodi, Fabio Massacci, and Julian Williams. 2017. The work-averse cyber
attacker model: Theory and evidence from two million attack signatures. In 16th
Annual Workshop on the Economics of Information Security, WEIS 2017, San Diego,
USA, 26-27 June, 2017.

[3] Ross Anderson and Tyler Moore. 2006. The economics of information security.
Science 314, 5799 (2006), 610–613.

https://doi.org/10.1007/978-3-319-99843-5_10

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic N. Alexopoulos et al.

[4] Ross J. Anderson. 2001. Why Information Security is Hard-An Economic Per-
spective. In 17th Annual Computer Security Applications Conference (ACSAC
2001), 11-14 December 2001, New Orleans, Louisiana, USA. 358–365. https:
//doi.org/10.1109/ACSAC.2001.991552

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017. 1093–1110.

[6] Leon Böck, Emmanouil Vasilomanolakis, Max Mühlhäuser, and Shankar Karup-
payah. 2018. Next Generation P2P Botnets: Monitoring Under Adverse Conditions.
In Research in Attacks, Intrusions, and Defenses - 21st International Symposium,
RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018, Proceedings. 511–531.

[7] Samuel Burke. 2016. http://money.cnn.com/2016/10/22/technology/cyberattack-
dyn-ddos/index.html

[8] Christian Cachin. 2016. Architecture of the Hyperledger blockchain fabric. In
Workshop on Distributed Cryptocurrencies and Consensus Ledgers.

[9] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM Comput. Surv. 41, 3 (2009), 15:1–15:58. https://doi.org/10.1145/
1541880.1541882

[10] Frédéric Cuppens and Alexandre Miège. 2002. Alert Correlation in a Cooperative
Intrusion Detection Framework. In 2002 IEEE Symposium on Security and Privacy,
Berkeley, California, USA, May 12-15, 2002. 202–215. https://doi.org/10.1109/
SECPRI.2002.1004372

[11] Roman Danyliw. 2016. RFC 7970. The Incident Object Description Exchange Format
Version 2. Technical Report.

[12] Claudiu Duma, Martin Karresand, Nahid Shahmehri, and Germano Caronni.
2006. A Trust-Aware, P2P-Based Overlay for Intrusion Detection. In International
Conference on Database and Expert Systems Applications (DEXA’06). IEEE, 692–
697.

[13] Jesse M Ehrenfeld. 2017. WannaCry, Cybersecurity and Health Information
Technology: A Time to Act. Journal of Medical Systems 41, 7 (2017), 104.

[14] Carol Fung, Olga Baysal, Jie Zhang, Issam Aib, and Raouf Boutaba. 2008. Trust
management for host-based collaborative intrusion detection. Managing Large-
Scale Service Deployment 5273 (2008), 109–122.

[15] Carol J Fung, Jie Zhang, Issam Aib, and Raouf Boutaba. 2011. Dirichlet-based
trust management for effective collaborative intrusion detection networks. IEEE
Transactions on Network and Service Management 8, 2 (2011), 79–91.

[16] Esther Gal-Or and Anindya Ghose. 2005. The economic incentives for sharing
security information. Information Systems Research 16, 2 (2005), 186–208.

[17] Yunchuan Guo, Han Zhang, Lingcui Zhang, Liang Fang, and Fenghua Li. 2018.
Incentive Mechanism for Cooperative Intrusion Detection: An Evolutionary
Game Approach. In International Conference on Computational Science. Springer,
83–97.

[18] Sascha Hauke. 2015. On the Statistics of Trustworthiness Prediction. Ph.D. Disser-
tation. Technische Universität Darmstadt.

[19] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. 2009. A survey of attack
and defense techniques for reputation systems. ACM Computing Surveys (CSUR)
42, 1 (2009), 1.

[20] Richeng Jin, Xiaofan He, and Huaiyu Dai. 2017. On the tradeoff between privacy
and utility in collaborative intrusion detection systems-a game theoretical ap-
proach. In Proceedings of the Hot Topics in Science of Security: Symposium and
Bootcamp. ACM, 45–51.

[21] Radu Jurca and Boi Faltings. 2003. An incentive compatible reputationmechanism.
In E-Commerce, 2003. CEC 2003. IEEE International Conference on. IEEE, 285–292.

[22] Kaspersky Lab. 2013. https://securelist.com/red-october-diplomatic-cyber-
attacks-investigation/36740/

[23] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Pa-
pamanthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016. 839–858. https://doi.org/10.1109/SP.2016.55

[24] Stefan Laube and Rainer Böhme. 2017. Strategic Aspects of Cyber Risk Informa-
tion Sharing. ACM Computing Surveys (CSUR) 50, 5 (2017), 77.

[25] Patrick Lincoln, Phillip A. Porras, and Vitaly Shmatikov. 2004. Privacy-Preserving
Sharing and Correlation of Security Alerts. In Proceedings of the 13th USENIX
Security Symposium, August 9-13, 2004, San Diego, CA, USA. 239–254.

[26] Guozhu Meng, Yang Liu, Jie Zhang, Alexander Pokluda, and Raouf Boutaba. 2015.
Collaborative security: A survey and taxonomy. ACM Computing Surveys (CSUR)
48, 1 (2015), 1.

[27] WeizhiMeng, ElmarWolfgang Tischhauser, QingjuWang, YuWang, and Jinguang
Han. 2018. When intrusion detection meets blockchain technology: a review.
IEEE Access 6 (2018), 10179–10188.

[28] Florian Menges and Günther Pernul. 2018. A comparative analysis of incident
reporting formats. Computers & Security (2018).

[29] OASIS Cyber Threat Intelligence (CTI) TC. 2017. STIX 2. Structured Threat
Infromation Expression. https://oasis-open.github.io/cti-documentation/

[30] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time.
Computer networks 31, 23-24 (1999), 2435–2463.

[31] Polyswarm. 2018. A decentralized cyber threat intelligence market. Technical
Report. https://polyswarm.io/polyswarm-whitepaper.pdf

[32] Ponemon Institute. 2018. Third Annual Study On Exchanging Cyber Threat Intelli-
gence: There Has to Be a Better Way. Technical Report. Ponemon.

[33] protective 2018. PROTECTIVE: Proactive Risk Management. https://protective-
h2020.eu/.

[34] Sebastian Ries. 2007. Certain trust: a trust model for users and agents. In Pro-
ceedings of the 2007 ACM Symposium on Applied Computing (SAC), Seoul, Korea,
March 11-15, 2007. 1599–1604. https://doi.org/10.1145/1244002.1244342

[35] Sebastian Ries, Sheikh Mahbub Habib, Max Mühlhäuser, and Vijay Varadharajan.
2011. CertainLogic: A Logic for Modeling Trust and Uncertainty - (Short Paper).
In Trust and Trustworthy Computing - 4th International Conference, TRUST 2011,
Pittsburgh, PA, USA, June 22-24, 2011. Proceedings. 254–261. https://doi.org/
10.1007/978-3-642-21599-519

[36] Martin Roesch. 1999. Snort-lightweight intrusion detection for networks. In
USENIX conference on System administration. 229–238.

[37] Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie. 2016. A Trustless
Privacy-Preserving Reputation System. In ICT Systems Security and Privacy Protec-
tion - 31st IFIP TC 11 International Conference, SEC 2016, Ghent, Belgium, May 30 -
June 1, 2016, Proceedings. 398–411. https://doi.org/10.1007/978-3-319-33630-527

[38] Vitaly Shmatikov and Ming-Hsiu Wang. 2007. Security against probe-response
attacks in collaborative intrusion detection. In Proceedings of the 2007 workshop
on Large scale attack defense. ACM, 129–136.

[39] Deepak K Tosh, Shamik Sengupta, Sankar Mukhopadhyay, Charles A Kamhoua,
and Kevin A Kwiat. 2015. Game theoretic modeling to enforce security infor-
mation sharing among firms. In Cyber Security and Cloud Computing (CSCloud),
2015 IEEE 2nd International Conference on. IEEE, 7–12.

[40] Johannes Ullrich. 2000. Dshield Internet Storm Center. https://
www.dshield.org/.

[41] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Math-
ias Fischer. 2015. Taxonomy and Survey of Collaborative Intrusion Detection.
Comput. Surveys 47, 4 (2015), 33. https://doi.org/10.1145/2716260

[42] Emmanouil Vasilomanolakis, Matthias Krügl, Carlos Garcia Cordero, Max
Mühlhäuser, and Mathias Fischer. 2015. SkipMon: A Locality-Aware Collabora-
tive Intrusion Detection System. In Computing and Communications Conference
(IPCCC), IEEE 34th International Performance. IEEE, 1–8.

[43] Cynthia Wagner, Alexandre Dulaunoy, Gérard Wagener, and Andras Iklody. 2016.
MISP: The Design and Implementation of a Collaborative Threat Intelligence
Sharing Platform. In Proceedings of the 2016 ACM on Workshop on Information
Sharing and Collaborative Security. ACM, 49–56.

[44] George D Webster, Ryan L Harris, Zachary D Hanif, Bruce A Hembree, Jens
Grossklags, and Claudia Eckert. 2018. Sharing is Caring: Collaborative Analysis
and Real-time Enquiry for Security Analytics. In IEEE International Symposium
on Recent Advances on Blockchain and Its Applications (BlockchainApp).

[45] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014).

[46] Mark Wood and Michael Erlinger. 2007. RFC 4766. Intrusion detection message
exchange requirements. Technical Report.

[47] Chenfeng Vincent Zhou, Christopher Leckie, and Shanika Karunasekera. 2010. A
Survey of Coordinated Attacks and Collaborative Intrusion Detection. Computers
& Security 29, 1 (feb 2010), 124–140.

[48] Quanyan Zhu, Carol Fung, Raouf Boutaba, and Tamer Basar. 2012. GUIDEX:
A game-theoretic incentive-based mechanism for intrusion detection networks.
IEEE Journal on Selected Areas in Communications 30, 11 (2012), 2220–2230.

[49] Dionysis Zindros. 2014. A pseudonymous trust system for a decentralized anony-
mous marketplace. https://gist.github.com/dionyziz/e3b296861175e0ebea4b

https://doi.org/10.1109/ACSAC.2001.991552
https://doi.org/10.1109/ACSAC.2001.991552
http://money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html
http://money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/SECPRI.2002.1004372
https://doi.org/10.1109/SECPRI.2002.1004372
https://securelist.com/red-october-diplomatic-cyber-attacks-investigation/36740/
https://securelist.com/red-october-diplomatic-cyber-attacks-investigation/36740/
https://doi.org/10.1109/SP.2016.55
https://oasis-open.github.io/cti-documentation/
https://polyswarm.io/polyswarm-whitepaper.pdf
https://protective-h2020.eu/
https://protective-h2020.eu/
https://doi.org/10.1145/1244002.1244342
https://doi.org/10.1007/978-3-642-21599-5_19
https://doi.org/10.1007/978-3-642-21599-5_19
https://doi.org/10.1007/978-3-319-33630-5_27
https://www.dshield.org/
https://www.dshield.org/
https://doi.org/10.1145/2716260
https://gist.github.com/dionyziz/e3b296861175e0ebea4b

	Abstract
	1 Introduction
	2 Background
	3 The TRIDEnT sharing platform
	3.1 System architecture and overview
	3.2 Marketplace functionality
	3.3 Building trust
	3.4 Privacy discussion
	3.5 Attacks and defenses

	4 Prototype and evaluation
	5 Related work
	6 Discussion and conclusions
	References

